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We calculate the finite-temperature shift of the critical wave vector Qc of the Pokrovsky-Talapov model
using a renormalization-group analysis. Separating the Hamiltonian into a part that is renormalized and one
that is not, we obtain the flow equations for the stiffness and an arbitrary potential. We then specialize to the
case of a cosine potential, and compare our results to well-known results for the sine-Gordon model, to which
our model reduces in the limit of vanishing driving wave vector Q=0. Our results may be applied to describe
the commensurate-incommensurate phase transition in several physical systems and allow for a more realistic
comparison with experiments, which are always carried out at a finite temperature.
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I. INTRODUCTION

The Pokrovsky-Talapov1,2 �PT� model describes a
large variety of systems displaying a commensurate/
incommensurate �C/IC� transition, ranging from vortex de-
pinning in type-II superconductors3 to adsorbate layers on
crystal surfaces,4 bromide molecules intercalated onto
graphite,5 superconductors with modulated thickness,6 and
quantum-Hall bilayer systems under a tilted magnetic
field.7–9 This model is closely related to the sine-Gordon
model,10 with the extra feature of a characteristic driving
wave vector Q imposed through the cosine term. It has been
studied previously using the Bethe ansatz and the replica
trick in the presence of quenched disorder.11 In this work we
present a functional renormalization-group calculation of the
finite-temperature corrections to the mean-field results.

The Hamiltonian for the PT model is

HPT =� d2r�1

2
�s����2 − t cos�� − Qx�� , �1�

where r= �x ,y� and d2r=dxdy. At mean-field level, one ap-
proximates the thermodynamic free energy by the Hamil-
tonian itself, evaluated at the field configuration that mini-
mizes the energy for given boundary conditions. This
neglects the contributions of all fluctuations away from the
minimum, therefore becoming less accurate as the tempera-
ture is raised and the entropic contribution of fluctuations
increases. In this approximation, it is straightforward to com-
pare the free energy of a configuration with the field follow-
ing the driving wave vector �commensurate phase� to that of
one in which the field no longer follows the imposed Q. As
Q increases, the presence of the stiffness term, suppressing
deviations of the field from uniformity, makes it more and
more costly to remain in the commensurate phase, until a
critical Qc is reached at which the incommensurate phase
becomes energetically favorable. The aim of this paper is to
investigate the effects of thermal fluctuations on this critical
Qc.

We shall use a functional renormalization-group �RG�
scheme to study the model at finite temperatures. Our ap-
proach is as follows: we perform a simple transformation
which maps the PT model to a sine-Gordon model with ad-
ditional terms depending only on the total topological

“charge” of the system and on the driving wave vector Q.
The RG transformation does not couple the sine-Gordon part
to the Q-dependent part. Taking advantage of this, we renor-
malize the sine-Gordon part of the Hamiltonian and obtain a
long-wavelength effective action, which we subsequently use
to obtain the new value of the critical Qc.

The main technical complication one faces in constructing
a systematic renormalization-group transformation for the
sine-Gordon model is the inability to expand the cosine term
in Eq. �1� in powers of the field and keep only a finite num-
ber of these. There are three main reasons for this complica-
tion: first, the periodicity of the cosine is crucial and is de-
stroyed by any finite-order Taylor expansion. Second, we are
interested in the two-dimensional case; as follows from
simple power counting,10,12 polynomial interactions involv-
ing any power of the field are relevant in two dimensions.
Finally, we are not interested in the fixed point of the RG
transformation but in the actual values of the various param-
eters after integrating out the degrees of freedom that we are
not interested in.

Not expanding the cosine means that, in diagrammatic
language, we ought to keep track of an infinite number of
diagrams to one loop. This problem has already been solved
for the case of the Wilsonian RG by Wegner and Houghton
in Ref. 13, where these authors derive the eponymous exact
renormalization-group equation. This equation is also the
limit of an approximate recursion relation first given by
Wilson.14 Wilson’s approximate recursion relation has been
applied to the problem of critical wetting in Refs. 15 and 16
because the effective-field theories used in studying critical
wetting share with our problem its dimensionality, prevent-
ing the use of the more usual perturbation methods. In gen-
eral, functional renormalization-group approaches are useful
for cases where there is an effective potential with a non-
trivial functional dependence on the field, such as the cosine
term in Eq. �1�.

The exact functional renormalization equation of Wegner
and Houghton relies on a sharp, moving cutoff in momentum
space. A sharp cutoff induces long-range interactions in real
space and complicates the calculation of the flow of the stiff-
ness �s in Eq. �1�. This may be overcome by employing a
smooth cutoff function;17,18 however, the resulting trajecto-
ries depend on the precise form of the cutoff. It has been
shown19 that the Wilsonian RG approach �of which the
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Polchinksi RG is an example� suffers from strong scheme
dependence even in the asymptotic regime. Various alterna-
tive formulations of RG transformations exist that do not
suffer from this problem; one that has recently been applied
to the sine-Gordon model is the functional renormalization
of the effective average action20,21 in which a transformation
is obtained, not for the Hamiltonian itself, but for the gener-
ating function for the one-particle irreducible �1PI� Green’s
functions. This is the RG scheme that we use in this paper.

The outline of this paper is as follows: in Sec. II we
describe the model and give a qualitative description of its
behavior. In Sec. III we explain the basic idea behind our
approach before proceeding directly to the derivation �Sec.
IV� and application to the PT model �Sec. V� of the appro-
priate RG flow equations. Finally, we give a brief discussion
of our results in Sec. VI.

II. MODEL

To qualitatively understand the features exhibited by a
system described by the PT Hamiltonian given in Eq. �1�,
consider first the case Q=0. It is then clear that, at mean-field
level, � will simply remain at one of the minima of
the potential V���=−t cos��� at �n=2�n with n
=0, �1, �2, . . .

On the other hand, consider the quantity ���r���r���c
= ���r���r���− ���r�����r���; for low enough temperatures,
it is given by the one-loop result

���r���r���c =
kBT

�s
K0� 	r − r�	

�

 �2�

in which �=��s / t, K0�x� is a modified Bessel function, and
�¯ �c indicates a cumulant. Since �→� if t→0 and K0�x�
=ln�2 /x�+const+O�x2 ln�x�
, the right-hand side of Eq. �2�
diverges as t→0, i.e., there is no long-range order in the
system. This is merely an example of the Mermin-Wagner
theorem.10,22 In addition, the Q=0 system exhibits a
Kosterlitz-Thouless �KT�-type transition22 on some line t��s�,
which is again completely missed by a mean-field analysis.

This transition is analogous to the roughening transition in
interface problems.18,23 In this analogy, the phase � corre-
sponds to the height of an interface above a reference level.24

The phase in which ���r���r���c remains finite as 	r−r�	
→� is called the “smooth” phase while the one in which
���r���r���c diverges is called the “rough” phase. Given the
value of ��0�=�0 at some arbitrary point which we take to
be the origin, the value of ��r� at some other point r� arbi-
trarily far from it either remains within a finite distance from
�0 �smooth phase� or it does not but rather crosses over the
maxima of V���. Clearly, the system with t=0 is in the rough
phase;25 the usual RG analysis of the sine-Gordon model,
Eq. �1� with Q=0 shows that, for given temperature T and
�s /T�1 /8�, there exists a tc below which the system is
rough and above which it is smooth. For �s /T�1 /8� it is
always smooth.

Consider now the case of finite Q. In the roughening pic-
ture, this corresponds to a potential V that depends on the
position x; as x increases, the minima of the potential move
to larger values of �n=2�n+Qx. In other words, the poten-

tial is effectively “tilted.” Thus, the potential part of the
Hamiltonian tends to favor a � that increases with position
and follows the potential, �=�n �commensurate phase�
while the gradient part favors a spatially constant � �incom-
mensurate phase�. The competition between �s and t leads to
a transition between the two states as, for example, t is var-
ied.

Notice that there are two separate effects here: one is the
roughening transition �belonging to the Kosterlitz-Thouless
universality class�, which is already present when Q=0 and
the other is the commensurate-incommensurate transition,
which appears only for finite Q. These two effects may be
conveniently separated out as described in the next section.

III. DETERMINATION OF Qc AT MEAN-FIELD
LEVEL

A. Separation of the Hamiltonian

We begin by shifting to the new variable 	=�−Qx,
whereupon the Hamiltonian becomes

HPT�	
 = HsG + HQ, �3a�

with

HsG�	
 =� d2r�1

2
�s��	�2 − t cos�	�� , �3b�

HQ�nT
	� =

1

2
�sQ

2 + 2��sQnT
	 �3c�

and

nT
	 =

1

2�
� dx�x	 = �

i

ni
	, �3d�

that is, the sum of the “charges” of all solitons present �per
unit length�; the integer i simply indexes the soliton.

This form of the Hamiltonian is advantageous in that it
consists of a sine-Gordon part, HsG, which is independent of
Q, plus the two terms in HQ, which do depend on Q. This
last term is the essential difference from a simple sine-
Gordon model. As we shall see in Sec. IV, HQ is unaffected
by an RG transformation. This will form the basis of our
treatment of finite-temperature effects.

B. Determination of critical Qc

We shall next compute the critical Qc in the mean-field
approximation; this will be straightforwardly extended to the
renormalized case in Sec. V.

To obtain the critical Qc, we notice that the transition
from the commensurate to the incommensurate phase is sig-
naled by the appearance of a finite soliton density with
charge −	nT

		. We therefore calculate the excess energy per
unit area of a configuration with a single soliton �with charge
n	=−1� over that of one with no solitons, 	=0; we denote
this by 
E. The part of the energy cost of a solitonic con-
figuration due to HsG is calculated in a standard way to be
Esol=8��st, hence 
E=Esol−2��sQ. This quantity vanishes
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at the transition point, yielding a mean-field critical Qc of8

Qc =
4

�
� t

�s
. �4�

Note that Qc diverges as �s→0, implying that the system
remains in the commensurate state for all momenta; this is in
agreement with the discussion at the end of Sec. II, accord-
ing to which the creation of solitons �hence the transition to
the incommensurate state� is caused by the stiffness over-
coming the tendency of the phase field � to follow the mini-
mum of the tilted potential.

IV. EXACT RENORMALIZATION-GROUP EQUATIONS

Various schemes have been developed to study
renormalization-group transformations of two-dimensional
field theories: in the theory of critical wetting, there have
been several studies using this formulation of the RG, ini-
tially to first order in the potential26 and then to all orders.15

All these approaches have essentially used a local-potential
approximation �LPA�, in which the potential is allowed to
change under coarse graining, while the stiffness is not. The
same method was later extended to a nonlocal model.27 In
the same context, there has also been work in which the
gradient term is renormalized in an approximate way.16 The
LPA is generally thought to be applicable to wetting prob-
lems because the anomalous dimension is expected to be
zero.

In the present problem, on the other hand, it is clear that
for vanishing Q one should obtain Kosterlitz-Thouless be-
havior; furthermore, as discussed above, the quantity Q only
couples to the number of solitons, which is conserved under
the RG flow. Thus, the appropriate RG must capture the
Kosterlitz-Thouless type of behavior, which requires �s to
flow under the transformation.

As mentioned above, we shall use the effective average
functional RG scheme introduced by Wetterich20 and applied
recently to the sine-Gordon model.21 For completeness, we
outline the derivation of the exact flow equation for the ef-
fective action before applying it to the sine-Gordon model;
for more details, see Refs. 20, 21, and 28.

From this point onwards, we will subsume the tempera-
ture into the parameters �s and t, that is, we use units in
which the temperature kBT=1.

One begins by defining the bare action S�	
=H�	
 and
adding to it a piece


SR�	
 =
1

2�
q

R��q�	�q�	��− q� ,

where R��q� is called a regulator function �see below�.
One also adds a source term 
SS�j ,	
=�q�j�q�	��−q�
+ j��−q�	�q�
 and writes S��j ,	
=S�	
+
SR�	
+
SS�j ,	
.
The quantity

W��j
 = log� D	 exp�− S��j,	
�

is then the generator of connected correlation functions12 for
the action S�. Its Legendre transform is


̃��	̄
 + W��j
 = �q�j��− q�	̄�q� + j�q�	̄��− q�
 ,

where 	̄�q�=�W�j
 /�j��−q� is the average of the field. We
also define a new, related function


��	̄
 = 
̃��	̄
 − 
SR�	̄
 . �5�

Using well-known12 properties of W and 
, and writing �
=ln��0 /�� where �0 is the initial value of the cutoff �, one
finds

��
��	̄
		̄ =
1

2
Tr���R��q��
�

�2��	̄
 + R��q�
−1� �6�

with 
�
�n��	̄� indicating the nth functional derivative of 
�.

This is an exact result.20 It can be shown20 that if R��q�
→� as �→� then 
��	̄
→S��	̄
: fluctuations about the
mean-field solution are completely suppressed. Conversely,

if R��q�→0 as �→0 then 
��	̄
→
�	̄
, so that the full
generator of 1PI vertices is obtained.

A full solution of Eq. �6� for 
� would amount to com-
puting all 1PI functions of the system at some length scale
�1 /�, including the full effects of fluctuations. This is not a
simple problem, and one must resort to approximations. We

will take the form of 
��	̄
 to be


��	̄
 =� d2r�1

2
�s�����	̄�2 + V��, 	̄�� .

A tedious but straightforward computation leads to28–30

��V = 2V −
1

2
� d2q

�2��2A�q���R��q� , �7a�

���s =
1

2
P�V�3��2� d2q

�2��2A
4�q���R��q��− �s���

+ 2�s
2���A�q�q2
 , �7b�

where the operator P projects the function to its right onto
the field-independent functional subspace31 and A�q�
= ��sq

2+R��q�+V�2�
−1. We take the cutoff function to be

R��q� = q2��2

q2 
b

. �8�

The parameter b controls the sharpness of the regulator func-
tion R� in both wave vector and real space: for large b, R� is
local in wave-vector space and long range in real space; for
b→1, it is instead smooth in momentum space but sharp in
real space.

If V�� , 	̄� is restricted to its leading Fourier component

V�� , 	̄�=−t���cos�	̄�, the flow equations are, to leading order
and after rescale

��t��� = �2 −
1

4��s

t���/�2
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���s��� =
�t���/�2
2

��s���
2−2/b�b

with �b=b
�3−2 /b�
�1+1 /b� / �48��, reproducing the well-
known leading-order flow equations for the sine-Gordon
model.10,18,32,33

Including higher-order terms on the right-hand side of
Eqs. �7a� and �7b� is, in principle, straightforward; for ex-

ample, expanding A�q� in powers of V�� , 	̄� and computing
the integrals, one obtains

��V��, 	̄� = −
V�2�

2b��
+

�− 1 + b��� �

�

1+1/b

�V�2��2

4b3�3 sin�2�

b



−

�− 2 + b��− 1 + b��� �

�

�2+b�/b

�V�2��3

3b4�4 sin�2�

b

 + ¯

�9�

A similarly ungainly equation holds for ���s���. These ex-
pressions are greatly simplified if we make the choice34 b
=1 in the regulator function, Eq. �8�. For the potential, the
series on the right-hand side of Eq. �9� may be summed to
yield

��V =
�

4��s
ln�1 +

V�2�

�2 
 .

Restricting the potential to the form V�� , 	̄�=−t���cos�	̄� we
obtain the flow equation21 for t���

��t��� = 2t��� −
1

2��s���t���/�2�1 −�1 − � t���
�2 �2� .

�10�

In a similar way, we obtain for the flow of �s���

���s��� =
t2���/�2

24��1 − t2���/�4
3/2 . �11�

The flow diagram corresponding to Eqs. �10� and �11� is
shown in Fig. 1. We now turn to the application of the flow
equations to the PT model.

V. APPLICATION OF RG TO THE PT MODEL

A. Calculation of Qc using the RG results

To apply our formalism to the PT model, we use a Gin-
zburg criterion.35 Using the fact that mean-field theory ap-
plies if36 ������2�, we conclude that the �=� f at which the
integration may be stopped may be located by integrating up
to the point at which ���� is a minimum. At this point, the
mean-field approach of Sec. III may be used to determine Qc,
with the effects of fluctuations having been taken into ac-
count by the renormalization of the parameters. The mean-
field treatment of the action at this point is justified a poste-

riori if indeed ���� f��2�. This condition is satisfied for all
parameter values we have studied �see Fig. 2 for a represen-
tative example�.

In Fig. 2 we show a representative plot of the evolution of
����� with �. Evidently, the minimum is well below 2� so
that mean-field theory is applicable to the renormalized 
.

Having determined the appropriate � f, we repeat the pro-
cedure of Sec. III to determine the critical Q. How would this
calculation be affected by the RG transformation? As we saw
in Sec. IV, HQ is invariant under the RG transformation,
while HsG is not, i.e., the parameters in HsG will change to
�s��� and t���, respectively. To obtain the critical Qc, we
notice that while HQ is unaffected by the RG, the energy of a
single soliton now depends on �: we have Esol���
=8��s���t���. This results in an energy difference between
the phase with no solitons and the phase with a single soliton
given by 
E=Esol���−2��s�0�Q. Setting this equal to zero
and solving for Q, as in Sec. III, yields

FIG. 1. Flow diagrams for the RG Eqs. �10� and �11�.

FIG. 2. Evolution of ����� �dark full line� as a function of �.
The dot-dashed line indicates the position of the minimum of ����.
The steep increase in ���� after its minimum is a result of our
approximations and therefore unphysical. Notice that the minimum
of ������2�. The initial values for this figure are �s /kBT=0.06
and t /�2kBT=0.01.
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Qc��� = exp�− ��
4

�

1

�s�0�
��s���t��� . �12�

The factor exp�−�� ensures that we are using physical �as
opposed to rescaled� units. Equation �12� reduces to the cor-
rect mean-field expression, Eq. �4�, for �=0.

The result given in Eq. �12� is nonuniversal, involving the
microscopic parameter �s�0�. This is expected: in calculating
a nonuniversal quantity such as Qc, is natural for micro-
scopic, thus nonuniversal, quantities to appear. Here, the de-
pendence on the microscopic physics arises both from the
presence of �s�0� and from � f, which is a function of �s�0�
and t�0�.

Let us now discuss the scheme dependence of our calcu-
lation. In Ref. 19, it is shown that the trajectories resulting
from the effective action functional RG scheme we use are
scheme independent, provided that the quantities t and �s
flow as powers of the parameter exp���, i.e., �s�exp�d���
with some d� �and similarly for t�. They term the region in
which this occurs the “freezing region.” Note that this
scheme independence does not hold in general for the case of
Wilson-type renormalization.

Figure 3 is a log plot of the evolution of �s and t with �.
The full line is t���, the dashed line is �s���, and the dot-
dashed line indicates the position of the minimum of ����
�see also Fig. 2�. Evidently, both �s��� and t��� are in the
freezing region at the values of � that we are interested in.
This happens for all initial values of �s and t that we have
checked.

B. Results and discussion

In Figs. 4�a� and 4�b� we show the ratio �=Qc��� /Qc�0�
determined by numerically integrating the flow equations
and applying the method discussed above; this corresponds

to the ratio �=Qc
RG /Qc

MF. A darker color indicates a larger
decrease in the critical Qc due to thermal effects �see the
insets and notice the different scales�. The plot in Fig. 4�b� is
a zoomed-in part of Fig. 4�a� �notice the range of the axes
and also the changed color coding�.

For the purposes of this section, we will switch back to
using natural units by defining �̃s /kBT=�s and t̃ / �kBT�2�= t,
i.e., �̃s and t̃ are the parameters in physical units �while t and
�s are in units in which kBT=�=1�.

First let us fix �̃s and T and vary t̃, i.e., fix �s and vary t.
For decreasing �increasing� t, � decreases �increases�, van-
ishing as t→0. This occurs because, as described in Sec. II,
for vanishing t there is no long-range order even in the ab-
sence of Q. This effect is not present at mean-field level,
hence � vanishes with decreasing t.

Next, fix t̃ and T and vary �s. From Fig. 4, � increases
�decreases� for decreasing �increasing� �s or �̃s.

Finally, consider fixing t̃ and �̃s and varying the tempera-
ture T. This corresponds to fixed t /�2�s or, in terms of Fig.
4, to moving on rays emanating from the origin with gradient

FIG. 3. Demonstration of the asymptotic simple scaling of the
trajectories, demonstrating their scheme independence �see text�.
The full line is t��� /�2kBT, the dashed line is �s��� /kBT, and the
dot-dashed line indicates the position of the minimum of ���� �see
Fig. 2�. The steep increase in ���� after its minimum is a result of
our approximations and therefore unphysical �see text�. The initial
values for this figure are the same as for Fig. 2: �s /kBT=0.06 and
t /�2kBT=0.01.

FIG. 4. �Color online� The ratio �=Qc
RG /Qc

MF predicted by our
RG analysis to its mean-field value. Part �b� corresponds to the
lower left corner of part �a�. The strips on the right indicate meaning
of shade. Notice the difference in scales between the two plots.
White corresponds to ��0.15.
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t /�s. Increasing �decreasing� the temperature T corresponds
to moving inward �outward� from the origin. As T is in-
creased, a T will be reached at which the system will enter
the rough phase at the extreme lower left corner of the dia-
gram; thus, at high enough T, Qc vanishes for all �̃s and t̃.
Equivalently, this may be viewed as a proliferation of soli-
tons because the RG flow there is such that t���→0 mono-
tonically as �→�, so that we also have Esol���→0. This
brings up the intriguing possibility of a purely temperature-
driven commensurate-incommensurate transition in suitable
systems. For low enough temperatures, �→1 as expected.

It would be desirable to compare our results to numerical
calculations. Unfortunately, the nonlinear nature of the prob-
lem makes simple numerical approaches unreliable. For ex-
ample, approximately including temperature effects via a
noise term in the extremization condition does not work for
reasons explained in Ref. 37. Full Monte Carlo numerical
results would be a useful check on the accuracy of our re-
sults; we hope that our work will motivate such analysis.

VI. CONCLUSIONS

We have studied thermal effects on the commensurate-
incommensurate transition point of the PT model using a
renormalization-group approach. Our scheme relies on split-

ting the PT Hamiltonian into a sine-Gordon part, HsG, and a
part depending only on the number of solitons present, HQ.
We then derive a functional RG transformation which acts on
the sine-Gordon part while leaving the soliton part invariant.
We are thus able to determine the critical Qc at which the
incommensurate phase eventually becomes stable, taking
into account thermal effects. We find a general lowering of
Qc compared to the mean-field result. Furthermore, there ex-
ists a regime in the �s-t plane in which Qc→0 even for finite
t. This is due to the roughening transition, which is of
Kosterlitz-Thouless type.

Since real experiments are performed at finite tempera-
tures, the approach developed here may be applied to de-
scribe the C/IC transition in several physical systems. An
application to the case of a quantum-Hall bilayer at total
filling �T=1 in the presence of a tilted magnetic field, moti-
vated by recent experiments,38 will be described in a forth-
coming publication.7
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